Surface Mount Digital Step Attenuator

DAT-3175A Series

75 Ω 0 to 31 dB, 0.5 dB Step 1MHz to 2.5 GHz

The Big Deal

- Wideband, operates up to 2.5 GHz
- Glitchless attenuation transitions
- High IP3, 52 dBm

CASE STYLE: DG983-2

Product Overview

The DAT-3175A+ series of 75Ω digital step attenuators provides adjustable attenuation from 0 to 31 dB in 1 dB steps. The control is a 5-bit serial/parallel interface, and the attenuators operate with either single positive or dual (positive and negative) supply voltage. DAT-3175A+ series models are produced by a unique CMOS process on silicon, offering the performance of GaAs with the advantages of conventional CMOS devices.

Feature	Advantages
Wideband operation, specified from 1MHz to 2.5 GHz	Can be used in multiple applications such as various versions of DOCSIS, satellite and defense, reducing part count.
Serial or parallel interface	Models available with serial or parallel interface mode to suit customer demand.
Good VSWR, 1.3:1 typ.	Eases interfacing with adjacent components and results in low amplitude ripple.
Single positive supply models: (Model suffixes: -SP+ and –PP+) +2.3 to +3.6V+	Use of single positive supply simplifies power supply design. An internal negative voltage generator supplies the desired negative voltage. Single positive supply results in excellent spurious performance, -140 dBm typical.
Dual supply models: (Model suffixes: -SN+ and –PN+) +2.7 to +3.6V (Positive) and -3.6 to -3.2V (Negative)	Dual supply provides spurious-free operation. It also allows fast switching up to 1 MHz (vs. 25 kHz for single supply).
Useable over a wide range of supply volt- ages, +2.3/2.7 to 5.2V	Wide range fo positive operating voltages allows the DAT-3175A+ Series of models to be used in a wide range of applications. See Application Note AN-70-032 for operation above +3.6V
Footprint compatible to DAT-3175-XX+ Series (XX=SN/SP/PN/PP)	Can fit into existing footprint and provide wideband performance, to 2.5 GHz instead of 2.0 GHz.
Glitchless Attenuation Transitions, 0.26 typical	Compared to previous generation of digital attenuatiors which is a vast improvement.

Key Features

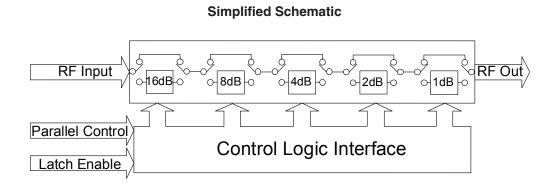
31 dB, 1.0 dB Step 5 Bit, Parallel Control Interface, Dual Supply Voltages

Product Features

- Dual Supply (Positive & Negative) Voltages
- Immune to latch up
- Glitchless attenuation transitions
- Excellent accuracy, 0.1 dB Typ
- Low Insertion Loss
- High IP3, +55-59 dBm Typ
- Very low DC power consumption
- Excellent return loss, 18 dB Typ
- Small size 4.0 x 4.0 mm

Typical Applications

- DOCSIS® 3.1
- Portable Wireless
- CATV & DBS
- MMDS & Wireless LAN
- Wireless Local Loop
- UNII & Hiper LAN
- Power amplifier distortion canceling loops


DAT-3175A-PN+

CASE STYLE: DG983-2

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

The DAT-3175A-PN+ is a 75Ω RF digital step attenuator that offers an attenuation range up to 31 dB in 1.0 dB steps. The control is a 5-bit parallel interface, operating on dual (positive and negative) supply voltages. The DAT-3175A-PN+ is produced using a unique CMOS process on silicon, offering the performance of GaAs, with the advantages of conventional CMOS devices.

REV. OR M155582 DAT-3175A-PN+ RS/CP 160908 Page 2 of 8

DAT-3175A-PN+

RF Electrical Specifications, 1-2500 MHz, T_{AMB}=25°C, V_{DD}=+3V, V_{SS}=-3.2V, 75Ω

Parameter	Freq. Range (GHz)	Min.	Тур.	Max.	Units
Accuracy @ 1 dB Attenuation Setting	0.001-1.2		0.03	0.18	
	1.2-2.0	—	0.1	0.20	dB
	2.0-2.5	—	0.1	0.23	
	0.001-1.2	—	0.07	0.21	
Accuracy @ 2 dB Attenuation Setting	1.2-2.0	—	0.15	0.26	dB
	2.0-2.5	—	0.15	0.31	
	0.001-1.2	—	0.05	0.27	
Accuracy @ 4 dB Attenuation Setting	1.2-2.0	—	0.15	0.36	dB
	2.0-2.5	—	0.2	0.47	
Accuracy @ 8 dB Attenuation Setting	0.001-1.2	—	0.1	0.39	
	1.2-2.0	—	0.24	0.60	dB
	2.0-2.5	—	0.35	0.79	
	0.001-1.2	—	0.23	0.63	dB
Accuracy @ 16 dB Attenuation Setting	1.2-2.5	—	0.8	1.0	
	2.0-2.5	—	0.8	1.43	
Insertion Loss ¹ @ all attenuator set to 0dB	0.001-1.2	—	1.2	1.8	dB
	1.2-2.5	—	1.6	1.9	UD
VSWR	0.001-1.2	—	1.3	—	:1
vown	1.2-2.5	—	1.4	—	1 :1
Input IP3 (at Min. and Max. Attenuation)	.005-2.5	—	55-69	—	dBm
Input IP2	.005-2.5		See Fig. 1		dBm
Input Power @ 0.1dB Compression (at Min. and Max. Attenuation)	0.030-2.5	_	+30	_	dBm
Input Operating Power	1 MHz to 30 MHz	—	_	See Fig. 2	dBm
	>30 MHz	—	—	+24	
Thermal Resistance (Junction to case)	_	_	25	_	°C/W

DC Electrical Specifications

Parameter	Min.	Тур.	Max.	Units
VDD, Supply Voltage	2.7	3	3.6 ²	V
IDD Supply Current	_	_	80	μA
Control Input Low	-0.3	—	0.6 ³	V
Vss, Supply Voltage	-3.6	_	-3.2	V
Iss, Supply Current	-40	—	—	μA
Control Input High	1.17	_	3.6	V
Control Current	—	—	20	μA

1. I. Loss values are de-embedded from test board Loss (test board's Insertion Loss: 0.10dB @100MHz, 0.40dB @1200MHz, 0.55dB @2000MHz, 0.75dB @4000MHz).

2. For operation above +3.6V see application note, AN-70-032

3. 0V during power-up.

Absolute Maximum Ratings⁴

<u> </u>		
Parameter		Ratings
Operating Temperature		-40°C to 105°C
Storage Temperature		-65°C to 150°C
Vdd		-0.3V Min., 5.5V Max.
Vss		-3.8V Min.
Voltage on any i	nput	-0.3V Min., 3.6V Max.
	1-30 MHz	Figure 2
Input Power	30-2500MHz	+30dBm

4. Permanent damage may occur if any of these limits are exceeded.

Switching Specifications

Parameter	Min.	Тур.	Max.	Units
Switching Speed, 50% Control to 0.5dB of Attenuation Value	_	0.4	0.7	µSec
Switching Control Frequency	_	1.0	_	MHz

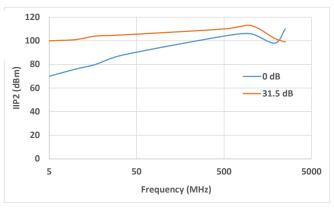
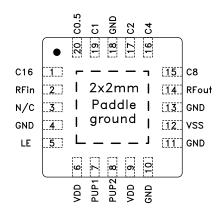
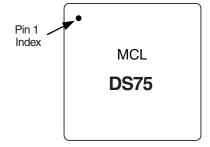


Figure 1. IP2 vs. frequency and attenuation

5. Operation between max operating and absolute max input power will result in reduced reliability.



Pin Description


Function	Pin Number	Description
C16	1	Control for Attenuation bit, 16dB (Note 3, 7)
RF in	2	RF in port (Note 1)
N/C	3	Not connected (Note 4)
GND	4	Ground connection
LE	5	Latch Enable Input (Note 2)
V _{DD}	6	Positive Supply Voltage
PUP1	7	Power-up selection (Note 7)
PUP2	8	Power-up selection
V _{DD}	9	Positive Supply Voltage
GND	10	Ground connection
GND	11	Ground connection
V _{SS}	12	Negative Supply Voltage
GND	13	Ground connection
RF out	14	RF out port (Note 1)
C8	15	Control for attenuation bit, 8 dB
C4	16	Control for attenuation bit, 4 dB
C2	17	Control for attenuation bit, 2 dB
GND	18	Ground Connection
C1	19	Control for attenuation bit, 1 dB
N/C	20	Not connected (Note 7)
GND	Paddle	Paddle ground (Note 5)

DAT-3175A-PN+

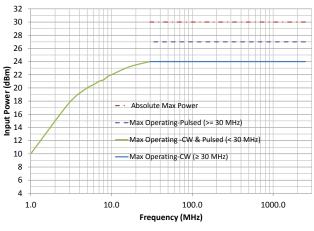
Pin Configuration (Top View)

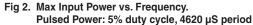
Device Marking

Notes:

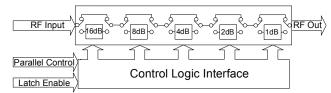
1. Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.

2. Latch Enable (LE) has an internal $\text{2M}\Omega$ to internal positive supply voltage


3. Place a 10K Ω resistor in series to be compatible with previous generation of models. and $10K\Omega$ maybe omitted in new designs.


4. Place a shunt $10K\Omega$ resistor to GND

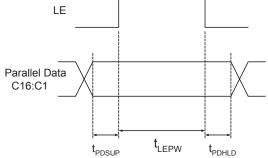
5. The exposed solder pad on the bottom of the package (See Pin configuration) must be grounded for proper device operation.


6. N/A

7. This pin has an internal $1M\Omega$ resistor to ground.

Simplified Schematic

The DAT-3175A-PN+ parallel interface consists of 5 control bits that select the desired attenuation state, as shown in Table 1: Truth Table


Table 1. Truth Table					
Attenuation State	C16	C8	C4	C2	C1
Reference	0	0	0	0	0
1 (dB)	0	0	0	0	1
2 (dB)	0	0	0	1	0
4 (dB)	0	0	1	0	0
8 (dB)	0	1	0	0	0
16 (dB)	1	0	0	0	0
31 (dB)	1	1	1	1	1
Note: Not all 32	possible cor	mbinations	of C1 - C16	are shown	in table

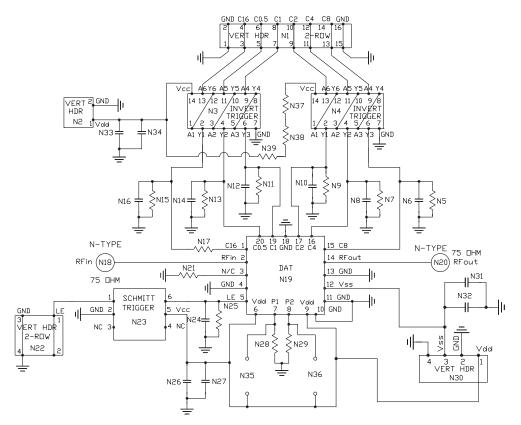
The parallel interface timing requirements are defined by Fig. 3 (Parallel Interface Timing Diagram) and Table 2 (Parallel Interface AC Characteristics), and switching speed.

For latched parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Figure 1) to latch new attenuation state into device.

For direct parallel programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct mode is ideal for manual control of the device (using hardwire, switches, or jumpers).

Table 2. Parallel Interface AC Characteristics				
Symbol	Parameter	Min.	Max.	Units
t _{LEPW}	LE minimum pulse width	10		ns
t _{PDSUP}	Data set-up time before clock rising edge of LE	10		ns
t _{PDHLD}	Data hold time after clock falling edge of LE	10		ns

Power-up Control Settings


The DAT-3175A-PN+ always assumes a specifiable attenuation setting on power-up, allowing a known attenuation state to be established before an initial parallel control word is provided.

When the attenuator powers up with LE=0, the control bits are automatically set to one of four possible values .These four values are selected by the two power-up control bits, PUP1 and PUP2 ,as shown in Table 3: (Power-Up Truth Table, Parallel Mode).

Table 3. Power-Up Truth Table, Parallel Mode			
Attenuation State	PUP1	PUP2	LE
Reference	0	0	0
8 (dB)	0	1	0
16 (dB)	1	0	0
31 (dB)	1	1	0
Defined by C1-C16 (See Table 1-Truth Table) X (Note 1) X (Note 1) 1			
Note 1: PUP1 and PUP2 Connect, without effect on attenua		0, 1, GROUNE), or not con-

Power-Up with LE=1 provides normal parallel operation with C1-C16, and PUP1 and PUP2 are not active.

TB-341 Evaluation Board Schematic Diagram

Note 1: Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.

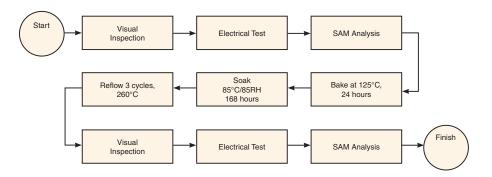
TB-341

Bill of Materials		
N5, N7, N9, N11, N13, N15, N21 & N25	Resistor 0603 10 KOhm +/- 1%	
N28 & N29	Resistor 0603 475 Ohm +/- 1%	
N37-N39	Resistor 0603 0 Ohm	
N17	Resistor 0402 10 KOhm +/- 1%	
N6, N8, N10, N12, N14, N16, N24, N26, N31 & N33	NPO Capacitor 0603 100pF +/- 5%	
N27, N32 & N34	Tantalum Capacitor 0805 100nF +/- 10%	
N3 & N4	Hex Invert Schmitt Trigger MSL1	
N23	Dual Schmitt Trigger Buffer SC-70 MSL1	

Additional Detailed Technical Information

additional information is available on our dash board. To access this information click here

	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	DG983-2 Plastic package, exposed paddle, lead finish: NiPdAu
Tape & Reel	F87
Standard quantities available on reel	7" reels with 20, 50, 100, 200, 500 Or 1000 devices 13" reels with 3K devices
Suggested Layout for PCB Design	PL-192
Evaluation Board	TB-341
Environmental Ratings	ENV33T1


ESD Rating

Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with MIL-STD-883 method 3015 Charge Device Model class C2 (500 to <1000V) per JESD22-C101

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp